Skip to main content
Log in

Characterization of glucose transport by cultured rabbit kidney proximal convoluted and proximal straight tubule cells

  • Articles
  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Rabbit kidney proximal convoluted tubule (RPCT) and proximal straight tubule (RPST) cells were independently isolated and cultured. The kinetics of the sodium-dependent glucose transport was characterized by determining the uptake of the glucose analog alpha-methylglucopyranoside. Cell culture and assay conditions used in these experiments were based on previous experiments conducted on the renal cell line derived from the whole kidney of the Yorkshire pig (LLC-PK1). Results indicated the presence of two distinct sodium-dependent glucose transporters in rabbit renal cells: a relatively high-capacity, low-affinity transporter (Vmax=2.28±0.099 nmoles/mg protein min, Km=4.1±0.27 mM) in RPCT cells and a low-capacity, high-affinity transporter (Vmax=0.45±0.076 nmoles/mg protein min, Km=1.7±0.43 mM) in RPST cells. A relatively high-capacity, low-affinity transporter (Vmax=1.68±0.215 nmoles/mg protein min, Km=4.9±0.23 mM) was characterized in LLC-PK1 cells. Phlorizin inhibited the uptake of alpha-methylglucopyranoside in proximal convoluted, proximal straight, and LLC-PK1 cells by 90, 50, and 90%, respectively. Sodium-dependent glucose transport in all three cell types was specific for hexoses. These data are consistent with the kinetic heterogeneity of sodium-dependent glucose transport in the S1–S2 and S3 segments of the mammalian renal proximal tubule. The RPCT-RPST cultured cell model is novel, and this is the first report of sodium-dependent glucose transport characterization in primary cultures of proximal straight tubule cells. Our results support the use of cultured monolayers of RPCT and RPST cells as a model system to evaluate segment-specific differences in these renal cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alavi, N.; Spangler, R. A.; Jung, C. Y. Sodium-dependent glucose transport by cultured proximal tubule cells. Biochim. Biophys. Acta 899:9–16; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Barfuss, D. W.; Schafer, J. A. Differences in active and passive glucose transport along the proximal nephron. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 10) 240:F322-F332; 1981.

    Google Scholar 

  • Bell, C. L.; Tenenhouse, H. S.; Seriver, C. R. Initiation and characterization of primary mouse kidney epithelial cultures. In Vitro Cell. Dev. Biol. 24:683–695; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Berry, C. A. Heterogeneity of tubular transport processes in the nephron. Annu. Rev. Physiol. 44:181–201; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Blais, A.; Morvan-Baleynaud, J.; Friedlander, G.; Grimellec, C. L. Primary culture of rabbit proximal tubules as a cellular model to study nephrotoxicity of xenobiotics. Kidney Int. 44:13–18; 1993.

    PubMed  CAS  Google Scholar 

  • Boogaard, P. J.; Mulder, G. J.; Nagelkerke, J. F. Isolated proximal tubular cells from rat kidney as an in vitro model for studies on nephrotoxicity. I. An improved method for preparation of proximal tubular cells and their functional characterization by alpha-methylglucose uptake. Toxicol. Appl. Pharmacol. 101:135–143; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Boogaard, P. J.; Zoeteweij, J. P.; vanBerkel, T. J. C.; van'tNordende, J. M.; Mulder, G. J.; Nagelkerke, J. F. Primary culture of proximal tubular cells from normal rat kidney as an in vitro model to study mechanisms of nephrotoxicity. Toxicity of nephrotoxicants at low concentrations during prolonged exposure. Biochem. Pharmacol. 39:1335–1345; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Chesney, R.; Sacktor, B.; Kleinzeller, A. The binding of phloridizin to the isolated luminal membrane of the renal proximal tubule. Biochim. Biophys. Acta 332:263–277; 1974.

    Article  CAS  Google Scholar 

  • Chung, S. D.; Alavi, N.; Livingston, D.; Hiller, S.; Taub, M. Characterization of primary rabbit kidney cultures that express proximal tubule functions in a hormonally defined medium. J. Cell Biol. 95:118–126; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Clancey, C. J.; Lever, J. E. Differential regulation of three glucose transporter genes in a renal epithelial cell line. J. Cell. Physiol. 185:244–252; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Cornish-Bowden, A. Analysis of enzyme kinetic data. Oxford: Oxford University Press; 1995.

    Google Scholar 

  • Courjault-Gautier, F.; Chevalier, J.; Abbou, C. C.; Chopin, D. K.; Toutain, H. J. Consecutive use of hormonally defined serum-free media to establish highly differentiated human renal proximal tubule cells in primary culture. J. Am. Soc. Nephrol. 5:1949–1963; 1995.

    PubMed  CAS  Google Scholar 

  • Elfarra, A. A.; Anders, M. W. Renal processing of glutathione conjugates. Role in nephrotoxicity. Biochem. Pharmacol. 33:3729–3732; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Garvin, J. L. Glucose absorption by isolated perfused rat proximal straight tubules. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 28) 259:F580-F586; 1990.

    CAS  Google Scholar 

  • Hediger, M. A.; Budarf, M. L.; Emanuel, B. S.; Mohandas, T. K.; Wright, E. M. Assignment of the human intestinal Na+/glucose cotransporter gene (SGLT1) to the q11.2-qter region of chromosome 22. Genomics 4:297–300; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Hirayama, B. A.; Lostao, M. P.; Panayotova-Heiermann, M.; Loo, D. D. F.; Turk, E.; Wright, E. M. Kinetic and specificity differences between rat, human and rabbit Na+-glucose cotransporters (SGLT1). Am. J. Physiol. (Gastrointest. Liver Physiol. 33) 270:G919-G926; 1996.

    CAS  Google Scholar 

  • Horio, M.; Fukuhara, Y.; Orita, Y.; Nakanishi, T.; Nakahama, H.; Moriyama, T.; Kamada, T. Gentamicin inhibits Na+-dependent d-glucose transport in rabbit kidney brush-border membrane vesicles. Biochim. Biophys. Acta 858:153–160; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Hull, R. N.; Cherry, W. R.; Weaver, G. W. The origin and characteristics of a pig kidney cell strain, LLC-PK1. In Vitro 12:670–677; 1976.

    PubMed  CAS  Google Scholar 

  • Ikeda, T. S.; Hwang, E. S.; Coady, M. J.; Hirayama, B. A.; Hediger, M. A.; Wright, E. M. Characterization of a Na+/glucose cotransporter cloned from rabbit small intestine. J. Membr. Biol. 110:87–95; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Kanai, Y.; Lee, W.-S.; You, G.; Brown, D.; Hadiger, M. A. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for d-glucose. J. Clin. Invest. 93:397–404; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Kempson, S. A.; McAteer, J. A.; Al-Mahrouq, H. A.; Dousa, T. P.; Dougherty, G. S.; Evan, A. P. Proximal tubule characteristics of cultured human renal cortex epithelium. J. Lab. Clin. Med. 113:285–296; 1989.

    PubMed  CAS  Google Scholar 

  • Koepsell, H.; Fritzsch, G.; Korn, K.; Madrala, A. Two substrate sites in the renal Na(+)-d-glucose cotransporter studied by model analysis of phlorizin binding and d-glucose transport measurements. J. Membr. Biol. 114:113–132; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Koepsell, H.; Spangenberg, J. Function and presumed molecular structure of Na+-d-glucose cotransport systems. J. Membr. Biol. 138:1–11; 1994.

    PubMed  CAS  Google Scholar 

  • Kong, C.-T.; Yet, S.-F.; Lever, J. E. Cloning and expression of a mammalian Na+/amino acid cotransporter with sequence similarity to Na+/glucose cotransporters. J. Biol. Chem. 268:1509–1512; 1993.

    PubMed  CAS  Google Scholar 

  • Lambotte, S.; Veyhl, M.; Kohler, M.; Morrison-Shetlar, A. I.; Kinne, R. K.; Schmid, M.; Koepsell, H. The human gene of a protein that modifies Na(+)-d-glucose co-transport. DNA Cell Biol. 15:769–777; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Lash, L. H. Susceptibility to toxic injury in different nephron cell populations. Toxicol. Lett. 53:97–104; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Lever, J. E. Regulation of dome formation in kidney epithelial cell cultures. Ann. NY Acad. Sci. 372:371–383; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Lever, J. E. Expression of a differentiated transport function in apical membrane vesicles isolated from an established kidney epithelial cell line. Sodium electrochemical potential-mediated active sugar transport. J. Biol. Chem. 257:8680–8686; 1982.

    PubMed  CAS  Google Scholar 

  • Mackenzie, B.; Loo, D. D. F.; Panayotova-Heiermann, M.; Wright, E. M. Biophysical characteristics of the pig kidney Na+/glucose cotransporter SGLT2 reveal a common mechanism for SGLT1 and SGLT2. J. Biol. Chem. 271:32678–32683; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie, B.; Panayotova-Heiermann, M.; Loo, D. D. F.; Lever, J. E.; Wright, E. M. SAAT1 is a low affinity Na+/glucose cotransporter and not an amino acid transporter. A reinterpretation. J. Biol. Chem. 269:22488–22491; 1994.

    PubMed  CAS  Google Scholar 

  • Misfeldt, D. S.; Sanders, M. J. Transepithelial glucose transport in cell culture. Am. J. Physiol. (Cell Physiol. 9) 240:C92-C95; 1981.

    CAS  Google Scholar 

  • Moran, A.; Handler, J. S.; Turner, R. J. Na+-dependent hexose transport in vesicles from cultured renal epithelial cell line. Am. J. Physiol. (Cell Physiol. 12) 243:C293-C298; 1982.

    CAS  Google Scholar 

  • Moran, A.; Turner, R. J.; Handler, J. S. Regulation of sodium-coupled glucose transport by glucose in a cultured epithelium. J. Biol. Chem. 258:15087–15090; 1983.

    PubMed  CAS  Google Scholar 

  • Oulianova, N.; Berteloot, A. Sugar transport heterogeneity in the kidney: two independent transporters or different transport modes through an oligomeric protein? 1. Glucose transport studies. J. Membr. Biol. 153:181–194; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Pajor, A. M.; Hirayama, B. A.; Wright, E. M. Molecular evidence for two renal Na+/glucose transporters. Biochim. Biophys. Acta 1106:216–220; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Peng, H.; Lever, J. E. Polyamine regulation of Na+/glucose symporter expression in LLC-PK1 cells. J. Cell. Physiol. 154:238–247; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Poppe, R.; Karbach, U.; Gambaryan, S.; Wiesinger, H.; Lutzenburg, M.; Kraemer, M.; Witte, O. W.; Koepsell, H. Expression of the Na+-d-glucose cotransporter SGLT1 in neurons. J. Neurochem. 69:84–94; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Quamme, G.; Freeman, H. Evidence for a high-affinity sodium-dependent d-glucose transport system in the kidney. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 22) 253:F151-F157; 1987.

    CAS  Google Scholar 

  • Rabito, C. A.; Ausiello, D. A. Na+-dependent sugar transport in a cultured epithelial cell line from pig kidney. J. Membr. Biol. 54:31–38; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt, J.; Veyhl, M.; Wagner, K.; Gambaryan, S.; Dekel, C.; Akhoundova, A. Korn, T.; Koepsell, H. Cloning and characterization of the transport modifier RS] from rabbit which was previously assumed to be specific for Na+-d-glucose cotransport. Biochim. Biophys. Acta 1417:131–143; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Roigaard-Petersen, H.; Jacobsen, C.; Sheikh, M. I. Characteristics of d-galactose, transport systems by luminal membrane vesicles from rabbit kidney. Biochim. Biophys. Acta 856:578–584; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Ruegg, C. E.; Gandolfi, A. J.; Nagle, R. B.; Brendel, K. Differential patterns of injury to the proximal tubule of renal cortical slices following in vitro exposure to mercuric chloride, potassium dichromate, or hypoxic conditions. Toxicol. Appl. Pharmacol. 90:261–273; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Ruegg, C. E.; Mandel, L. J. Bulk isolation of renal PCT and PST 1. Glucose-dependent metabolic differences. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 28) 259:F164-F175 1990.

    CAS  Google Scholar 

  • Sakhrani, L. M.; Badie-Dezfooly, B.; Trizna, W.; Mikhail, N.; Lowe, A. G.; Taub, M.; Fine, L. G. Transport and metabolism of glucose by renal proximal tubular cells in primary culture. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 15) 246:F757-F764; 1984.

    CAS  Google Scholar 

  • Segal, S.; Rosenhagen, M.; Rea, C. Developmental and other characteristics of alpha-methyl-d-glucoside transport by rat kidney cortex slices. Biochim. Biophys. Acta 291:519–530; 1973.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, M. The chemical and steric determinants governing sugar interactions with renal tubular membranes. Biochim. Biophys. Acta 332:248–262; 1974.

    Article  CAS  Google Scholar 

  • Taub, M.; Livingston, D. The development of serum-free hormone-supplemented media for primary kidney cultures and their use in examining renal functions. Ann. NY Acad. Sci. 372:406–421; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Trifillis, A.; Del Valle, P. L.; Cui, X.; Lipsky, M.; Ruegg, C.; Kane, A. S. Cultured rabbit renal proximal straight tubular cells are more susceptible to mercuric chloride than convoluted tubular cells. In Vitro Mol. Toxicol. 11:133–138; 1998.

    CAS  Google Scholar 

  • Turk, E.; Zabel, B.; Mundlos, S.; Dyer, J.; Wright, E. M. Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature 350:350–356; 1991.

    Article  Google Scholar 

  • Turner, R. J.; Moran, A. Stoichiometric studies of the renal outer cortical brush border membrane d-glucose transporter. J. Membr. Biol. 67:73–80; 1982a.

    Article  PubMed  CAS  Google Scholar 

  • Turner, R. J.; Moran, A. Further studies of proximal tubular brush border membrane d-glucose transport heterogeneity. J. Membr. Biol. 70:37–45; 1982b.

    Article  PubMed  CAS  Google Scholar 

  • Turner, R. J.; Moran, A. Heterogeneity of sodium-dependent d-glucose transport sites along the proximal tubule: evidence from vesicle studies. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 11) 242:F406-F414; 1982c.

    CAS  Google Scholar 

  • Veyhl, M.; Spangenberg, J.; Puschel, B.; Poppe, R.; Dekel, C.; Fritzsch, G.; Haase, W.; Koepsell, H. Cloning of a membrane-associated protein which modifies activity and properties of the Na(+)-d-glucose cotransporter. J. Biol. Chem. 268:25041–25053; 1993.

    PubMed  CAS  Google Scholar 

  • Wells, R. G.; Mohandas, T. K.; Hediger, M. A. Localization of the Na+/glucose cotransporter gene SGLT2 to human chromosome 16 close to the centromere. Genomics 17:787–789; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama, Y.; Lever, J. E. Increased trehalase expression after glucose limitation of LLC-PK1 clones. Am. J. Physiol. (Cell Physiol. 24) 255:C816-C821; 1988.

    CAS  Google Scholar 

  • You, G.; Lee, W.-S.; Barros, E. J. G. et al. Molecular characteristics of Na+/coupled glucose transporters in adult and embryonic rat kidney. J. Biol. Chem. 270:29365–29371; 1995.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro L. Del Valle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Valle, P.L., Trifillis, A., Ruegg, C.E. et al. Characterization of glucose transport by cultured rabbit kidney proximal convoluted and proximal straight tubule cells. In Vitro Cell.Dev.Biol.-Animal 38, 218–227 (2002). https://doi.org/10.1290/1071-2690(2002)038<0218:COGTBC>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2002)038<0218:COGTBC>2.0.CO;2

Key words

Navigation